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Abstract. We present a new model reproducing the temperature dependence of hydrogen-
bond lengths observed in K3H(SO4)2 (KHS) and K3D(SO4)2 (DKHS). The model also gives a
consistent account of the Ubbelohde effect and the disappearance of an ordered phase in KHS.

1. Introduction

The substitution of deuterons for protons in hydrogen-bonded materials gives rise to an
increase in hydrogen-bond lengths (oxygen–hydrogen–oxygen distances)u. Such a change
in the geometry of hydrogen bonds has long been known as the Ubbelohde effect [1]. In
addition to the Ubbelohde effect, a significant increase in the phase-transition temperatureTc
upon deuteration is observed in many hydrogen-bonded materials: for example, in a typical
hydrogen-bonded crystal KH2PO4 (KDP), the increase inu upon deuteration is about 0.02Å;
that of Tc is about 100 K.

Ichikawa and co-workers [2] found a simple linear relationship betweenTc andu on the
basis of available data for KDP and asserted that the increase inTc upon deuteration can be
ascribed to an increase inu. They called this the ‘geometric isotope effect’. Nelmes [3] re-
examined the high-resolution neutron diffraction results and confirmed that part, at least, of
the increase inTc is attributable to the geometric isotope effect. Similar relationships to the
one described above are also observed for H2C4O4 [4] and PbHPO4 (LHP) [5]. Accordingly,
it is necessary to clarify the physical origin of the increase inu upon deuteration and the
influence of the increase inu on Tc if we are to achieve an understanding of the phase-
transition phenomenon in hydrogen-bonded crystals. There is, however, no phase-transition
model explaining the isotope effect onTc as well as the Ubbelohde effect available so far.
In this paper, we propose such a model.

For this purpose, we investigate here K3H(SO4)2 (KHS) and K3D(SO4)2 (DKHS). In
these systems, a phase transition from an antiferroelectric phase to a paraelectric phase is
observed atTc = 85 K in DKHS, whereas there is no phase transition in KHS [6, 7]. As
regards the Ubbelohde effect, a temperature dependence is observed: forT > 85 K, the
increase ofu upon deuteration is almost constant (about 0.02Å) like for KDP and LHP,
whereas it increases with the decrease in temperature forT < 85 K [8]. This temperature
dependence indicates that the order of the electric dipole moments influences the hydrogen-
bond lengths. In this paper, we examine the properties of the phase transition and clarify the
physical origin of the Ubbelohde effect in the KHS system, on the basis of a proton–dipole
model, which has already been applied to the KDP and CsH2PO4 (CDP) systems [9, 10].
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2. The phase-transition model for the KHS system

Hydrogen bonds in KHS and DKHS are closed in a dimer in which two SO4 molecules are
connected by a hydrogen bond with one proton (a deuteron). The interaction between dimers
can, therefore, be assumed to be just the dipole–dipole interaction, which has a long-range
character. So we considerN dimers interacting with each other by dipole–dipole interaction,
under the assumption that (1) a proton strongly interacts with the distortion of the two SO4

molecules connected by the proton; (2) the distortion is proportional to the electric dipole
moment of the SO4; and (3) the dipole moments of SO4 molecules lie along the same
direction in a lattice.

The total energy in this dimer system can be written as follows:

E =
N∑
i

Ei + 1

2

i 6=j∑
i,j

2∑
α.β=1

D
αβ

i,j µiαµjβ (1)

where the first term is the energy of the dimers and the second term is the electric dipole
interaction between the dimers, in which the dipole moment of SO4 in dimer i is expressed
asµiα (α = 1 or 2).

For the energyEi of dimeri embedded in the lattice, we assume the following expression
to apply:

Ei = A

2
(µ2

i1+ µ2
i2)+

B

2
(ui − u0)

2+ Cµi1µi2+ Ep (2)

where the first term is the distortion energy of two SO4 molecules, the second term is
the elastic energy dependent on the hydrogen-bond lengthui , the third term is the dipole
interaction in dimeri, and the fourth term is the ground-state energy for a proton in dimer
i obtained by solving the Schrödinger equation:[

− h̄
2

2m

∂2

∂x2
+ Up(x)+ Vi(x)

]
ψ = Epψ. (3)

In the expression above,m is the proton (deuteron) mass,x is the position of the proton
(deuteron) measured from the centre of the hydrogen bond along the bond axis,Up(x) is a
potential acting on the proton (deuteron) when there is no distortion of the SO4 molecules,
Vi(x) is the energy of the interaction between the proton (deuteron) and the distortion of
the SO4 molecules andψ is the ground-state wave function for the proton (deuteron). We
took into account just the proton motion along the hydrogen-bond axis, for simplicity.

For Up(x), we adopt an empirical potential defined by

Up(x) = f (ui/2− x)+ f (ui/2+ x) (4)

using the Morse potential:

f (r) = f0[exp[−2a(r − r0)] − 2 exp[−a(r − r0)]] . (5)

The empirical potential has been widely used to examine the properties of hydrogen bonds
[11]. Note here that this empirical potential has two minima for longui , whereas, for short
ui , it has one minimum: the potential profile changes drastically, depending on the value
of ui .

ForVi(x), we assume the relationVi(x) = K(µi1+µi2)x to hold, whereK is a coupling
constant. This assumption forVi was first introduced by Kojyo and Onodera [10] in order
to examine the phase transition in the CDP system. We call it a proton–dipole model since
a strong coupling between a proton and the dipole moments is assumed. An application of
the proton–dipole model to KDP and DKDP was performed by Sugimoto and Ikeda [9]; it
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was shown that properties of this system, including the isotope effect of the phase-transition
temperature, are explained consistently. The success strongly indicates that the interaction
between a proton and dipole moments plays an essential role in phase-transition phenomena
in hydrogen-bonded materials. Thus we adopt the assumption of strong coupling for the
KHS system. We emphasize here that the ground-state energy of a proton (deuteron) in our
model is dependent on bothui andµi1+ µi2: Ep = Ep(ui, µi1+ µi2).

In order to proceed, it is convenient to introduce new variables defined by

si = 1√
2
(µi1+ µi2) and ti = 1√

2
(µi1− µi2).

By using these variables, equation (1) can be rewritten as

E =
N∑
i

[
A+ C

2
s2
i + Ep(ui, si)+

B

2
(ui − u0)

2+ A− C
2

t2i

]

+ 1

2

i 6=j∑
i,j

[Dss
ij sisj +Dts

ij tisj +Dst
ij si tj +Dtt

ij ti tj ] (6)

where

Dss
ij = (D11

ij +D12
ij +D21

ij +D22
ij )/2

Dts
ij = (D11

ij +D12
ij −D21

ij −D22
ij )/2

Dst
ij = (D11

ij −D12
ij +D21

ij −D22
ij )/2

Dtt
ij = (D11

ij −D12
ij −D21

ij +D22
ij )/2.

We adopt here the mean-field approximation for the dipole–dipole interaction between
dimers. This approximation is valid for an interaction with a long-range character such as
the dipole–dipole interaction.

As seen from equation (6), the fields acting onsi and ti in dimer i are regarded as

j 6=i∑
j

[Dss
ij sj +Dst

ij tj ] and
j 6=i∑
j

[Dts
ij sj +Dtt

ij tj ]

respectively. In the mean-field approximation, using the mean fieldss̄ andt̄ , these quantities
may be expressed as

j 6=i∑
j

[Dss
ij sj +Dst

ij tj ] = Dss s̄ +Dst t̄ (7)

and
j 6=i∑
j

[Dts
ij sj +Dtt

ij tj ] = Dts s̄ +Dtt t̄ (8)

where

Dss =
∑
j (6=i)

Dss
ij Dst =

∑
j (6=i)

Dst
ij

Dts =
∑
j (6=i)

Dts
ij Dtt =

∑
j (6=i)

Dtt
ij

are assumed.
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The mean fields introduced above,s̄ and t̄ , are determined from the self-consistency
conditions: s̄ = 〈si〉 and t̄ = 〈ti〉, where〈Xi〉 means the thermal average of the quantityXi
defined by

〈Xi〉 =
(∫ ∫ ∫

dsi dui dti Xi exp[−(Es + Et)/kT ]

)
×
(∫ ∫ ∫

dsi dui dti exp[−(Es + Et)/kT ]

)−1

(9)

with

Es = A+ C
2

s2
i + Ep(ui, si)+

B

2
(ui − u0)

2+ (Dss s̄ +Dst t̄)si (10)

and

Et = A− C
2

t2i + (Dtt t̄ +Dts s̄)ti . (11)

The thermal average of the quantityti , 〈ti〉, can easily be calculated by performing the
integration of equation (9). Using this result and the self-consistency condition fort̄ , we
obtain the following result:

t̄ = −Dts

A− C +Dtt

s̄. (12)

Substituting this relation into equation (10), we can expressEs as follows:

Es = As

2
s2
i +Dss̄si + Ep(ui, si)+ B

2
(ui − u0)

2 (13)

where

As = A+ C and Ds = Dss − DtsDst

A− C +Dtt

are used.
By using equation (13), the thermal average of a quantityF dependent on onlysi and

ui can be calculated by performing the following integration:

〈F 〉 =
(∫ ∫

dsi dui F (si, ui) exp[−Es/kT ]

)/(∫ ∫
dsi dui exp[−Es/kT ]

)
. (14)

Table 1. The values of the parameters used in our calculations. Here,s0 is the unit ofsi .

f0 a r0 K
√

2s0 As/s
2
0 Ds/s

2
0 B u0

2 eV 3 Å−1 0.98 Å 0.8 eV Å−1 0.2 eV −0.018 eV 13.2 eVÅ−2 2.66 Å

3. The phase transition and the Ubbelohde effect

In table 1, the parameter values used in this paper are listed. The parameters adopted in
the empirical potentialUp (f0, a and r0) were those used in the calculation for KDP [9],
since we have no knowledge of the values of these parameters for the KHS system. The
remaining parameters,K, As , Ds , B andu0, were determined so as to reproduce both the
transition temperatureTc and the hydrogen-bond length atTc in DKHS.
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(a)

(b)

(c)

Figure 1. The profiles of the potential,Up(x) + Vi(x), at (a) ui = 2.4 Å, (b) 2.5 Å and
(c) 2.6 Å. The profiles atsi/s0 = 0 and 1.0 are shown by broken and full curves, respectively.
The horizontal lines in the figures indicate the ground-state energies for the proton (H) and
deuteron (D).
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In figure 1, we show the potential acting on a proton (deuteron),Up(x) + Vi(x), at
si/s0 = 0 and 1.0 with the ground-state energies obtained by solving the Schrödinger
equation (equation (4)) numerically. With the parameter values of the empirical potential
chosen here, the potential atsi/s0 = 0, i.e.,Up(x), has one minimum at the centre of the
hydrogen bond (x = 0) for ui < 2.42 Å, whereas it has two minima forui > 2.42 Å. Note
that the difference between the ground-state energy for the proton and that of the deuteron
increases with increase insi .

Figure 2. The dependencies ofEp(ui , si ) on si for (a)ui = 2.4 Å, (b) 2.5 Å and (c) 2.6 Å. The
results for the proton and deuteron are represented by open circles and crosses, respectively.

The si-dependence of the ground-state energy is shown in figure 2. As seen in this
figure, the decrease inEp with the increase ofsi is more rapid for a deuteron than for a
proton. The isotope dependence ofEp(si, ui) obtained here is due to deformation of the
potential profiles induced by changes ofsi and ui . We emphasize here that the isotope
dependence ofEp is the origin of all of the isotope effects that are obtained below.

Energy-contour maps ofEs at s̄ = 0 obtained from equation (13) are shown in figures
3(a) and 3(b) for a proton and a deuteron, respectively. The striking feature in these figures
is thatEs for the proton has one minimum atsi = 0, whereas, in the case of the deuteron,
there are two minima atsi/s0 = 0.8 and−0.8.

In figure 4 we show the temperature dependence of|〈si〉| for the deuteron obtained
by using the self-consistency condition. We can see from this result that there is an
ordered phase at low temperatures, which undergoes a second-order phase transition at
Tc ' 85 K. For the proton, on the other hand, the only self-consistent solution is|〈si〉| = 0:
no ordered phase exists for protons. These results are in agreement with observations for
the KHS system. Although the parameters were chosen so as to reproduceTc for DKHS, the
agreement indicates that our model proposed here is valid for achieving an understanding
of the phase-transition phenomenon in the KHS system.

In figure 5, we show the temperature dependence of〈ui〉 for both the proton and the
deuteron. As seen in this figure, the features of the temperature dependence obtained
are as follows: (1)〈ui〉 decreases with decrease in temperature in the paraelectric phase,
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(a)

(b)

Figure 3. Energy-contour maps ofEs(si , ui ) at s̄ = 0 for (a) the proton and (b) the deuteron.
The numbers in the figure are the energy values in eV.

whereas, in the ordered phase,ui increases with decrease in temperature; and (2) in the
paraelectric phase, the difference between〈ui〉 for the proton and that for the deuteron is
almost independent of the temperature and its value is about 0.02Å. These features are
completely in agreement with the recent observations for the KHS system made by Noda
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Figure 4. The temperature dependence of the order parameter|〈si〉| for the deuteron. For the
proton,〈si〉 = 0 holds in all temperature regions.

Figure 5. Temperature dependencies of〈ui〉. Open circles and crosses are used for the proton
and deuteron, respectively.

et al [8]: our model reproduces the Ubbelohde effect in the KHS system completely. Finally,
we emphasize that all of the isotope effects obtained here arise just from the difference in
mass between the proton and the deuteron.

4. Discussion

First we make a comment concerning the disappearance of the ordered phase in KHS. In the
mean-field approximation, the condition for an ordered phase to be stabilized is that there
is a region ofs̄ in which the relation〈si〉 > s̄ is satisfied. The appearance of the ordered
phase in the present calculation is, therefore, caused by the fact thatEs for the deuteron has
two minima atsi/s0 = 0.8 and−0.8 whens̄ = 0 because, in this case, states stabilized by
applying the mean field (s̄) can have large dipole moments. In the case of the proton, on the
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other hand, dipole moments induced bys̄ are small, becauseEs at s̄ = 0 has a minimum
at si = 0. This property ofEs is the origin of the disappearance of ordered phases in KHS.

The position of the energy minima inEs at s̄ = 0 varies with the values of the
parameters. Accordingly, there is a possibility that the stabilization of an ordered phase
at low temperatures can be realized for protons by using other sets of the parameters. Since
the parameters, especiallyK, As , Ds , B and u0, are expected to be dependent on the
materials involved, there must be hydrogen-bonded materials in which an ordered phase is
realized for protons. In fact, a phase transition is observed at 20 K [16] for K3H(SeO4)2.
More detailed discussion concerning the properties of the phase transition for materials in
which the hydrogen bond closes in a dimer will be presented in a forthcoming paper.

To explain the isotope effect onTc in hydrogen-bonded materials, the tunnelling motion
of protons (deuterons) has been introduced by Blinc [12] and by Tokunaga and Matsubara
[13]. Hydrogen-bonded materials exhibiting an isotope effect onTc have mainly been
investigated from this point of view. For the KHS system, Moritomoet al [14] asserted,
on the basis of an analysis of their observations, that proton tunnelling plays a dominant
role as regards the phase transition and related properties. Although the introduction of the
tunnelling motion provides an explanation for the large isotope effect onTc, there is no
observation of direct evidence for the tunnelling motion of protons (deuteron), in spite of
recent careful experiments [15]. Accordingly, there is some doubt as regards the existence
of tunnelling motion of protons in hydrogen-bonded materials. In addition, this model could
not give a consistent account for the Ubbelohde effect.

We emphasize here that tunnelling motion of protons (deuterons) is not assumed in
our model explicitly. Both the Ubbelohde effect and the isotope effect onTc—that is, the
isotope effects of〈ui〉 and of 〈si〉 obtained—arise just from the isotope dependence ofEp.
This isotope dependence ofEp is caused by the fact that the potential profile varies withsi
andui . Accordingly, the physical origin of the isotope effect in this system is ascribable to
deformation of the potential profile induced by the interaction between a proton (deuteron)
and SO4 tetrahedra, not the tunnelling motion of a proton (deuteron).

We again emphasize that our model gives a consistent account of not only the Ubbelohde
effect but also the isotope effect onTc in the KHS system. Since the hydrogen-bond network
in this system is closed in a dimer, it is impossible for the mechanism of the phase transition
to be based on the configuration energy determined by the proton (deuteron) configurations,
introduced by Slater [16] and refined by Takagi [17]. On the other hand, the proton–dipole
model gives a consistent account of the properties of KDP and DKDP including the isotope
effect onTc, as shown by Sugimoto and Ikeda [9, 18]. These facts are considered to be
strong evidence of the validity of the present model based on the proton–dipole model.

Finally, we note that there is ambiguity concerning the determination of the parameters.
Accordingly, there might be another set of parameter values with which the KHS system is
well described. However, the ambiguity has no influence on the conclusions obtained from
the present calculation.

5. Conclusion

With the new model proposed here, a consistent account has been obtained of the Ubbelohde
effect as well as properties of the phase transition in the KHS system. This success strongly
indicates that the model is valid for the description of the physics of hydrogen-bonded
materials in which the hydrogen bond closes in a dimer.
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